Novel method for the synthesis of α - and β-halogenonaphthalenes by regioselective benzannulation of aryl(gem-dihalogenocyclopropyl)methanols: application to the total synthesis of the lignan lactones, justicidin \mathbf{E} and taiwanin \mathbf{C}^{1}

Yoo Tanabe, ${ }^{,, a}$ Shinzo Seko, ${ }^{b}$ Yoshinori Nishii, ${ }^{a}$ Taichi Yoshida, ${ }^{a}$
Naoka Utsumi ${ }^{b}$ and Gohfu Suzukamo ${ }^{b}$
${ }^{a}$ School of Science, Kwansei Gakuin University, 1-1-155 Uegahara, Nishinomiya, Hyogo 662, Japan
${ }^{b}$ Synthetic Organic Research Laboratory, Sumitomo Chemical Co., Ltd., 2-10-1 Tsukahara, Takatsuki, Osaka 569, Japan

Acid treatment of two types of aryl(gem-dihalogenocyclopropyl)methanols (ADCMs) 1 and 3 gives α - and β-halogenonaphthalenes in good yields with excellent selectivity. These alternative annulations involve two distinctive types of highly regioselective acid-induced cyclopropane ring cleavage, wherein the preferential formation of more stable cationic intermediates determines the selectivity. The stereochemical mode of both the preparation and the annulation between diastereoisomers of an ADCM has been checked. As a demonstration of this annulation, a total synthesis of each of the natural lignan lactones, justicidin E 19 and taiwanin C 20, has also been performed. Since these 4-arylnaphthalenes are expected to exhibit biological activity, the anti-platelet activating factor (anti-PAF) activity of justicidin E has been assayed.

Reactions utilizing the characteristic properties of cyclopropanes have allowed the development of several unique and useful syntheses. ${ }^{2}$ The relief of the inherent ring strain provides a variety of thermal, oxidative and reductive, electrophilic and nucleophilic ring-opening reactions. Of the functionalized cyclopropanes, gem-dihalogenocyclopropanes possess the following significant features: (1) constituents of useful biologically active compounds, themselves; ${ }^{3}$ (2) easy preparation by the dihalogenocarbene addition to olefins; ${ }^{4}$ (3) a precursor of halogenocyclopropanes or cyclopropanes by reductive dehalogenation using tributyltin hydride, metal hydrides, and other reagents; ${ }^{5}$ (4) worthwhile intermediates for transformations such as the Nazarov-type cyclopentannulation ${ }^{6}$ and the vinylcyclopropylidene rearrangement; ${ }^{7}$ and (5) favourite synthons for cyclopropane derivatives by inter- and intra-molecular stereocontrolled $\mathrm{C}-\mathrm{C}$ bond formation through both anionic ${ }^{8}$ and radical type methods. ${ }^{9}$

Along with our interest in new and useful reactions and in compounds utilizing gem-dihalogenocyclopropanes, ${ }^{9,10}$ we have already communicated a novel method for the synthesis of 1- and 2-halogenonaphthalenes by using annulation of aryl(gem-dihalogenocyclopropyl)methanols (abbreviated ADCM 1 and 3) with suitable acid catalysts, wherein two distinctive types of highly regioselective acid-induced cyclopropane ring cleavage are involved. ${ }^{1}$ Application of this benzannulation \dagger to a total synthesis of natural lignan lactones, justicidin E $17{ }^{11}$ and taiwanin C 18, ${ }^{12}$ was also performed. In this context, we describe the full details of these results. Since 4arylnaphthalenes are attracting attention as the basic skeleton of several biologically active natural products and pharmaceuticals, these compounds and their synthetic isosteres have been one of the synthetic targets. ${ }^{13}$ In connection with our studies on the anti-platelet activating factor (anti-PAF) active drug, ${ }^{14}$ we

[^0]also assayed justicidin E , since lignan-type compounds are reported to exhibit significant anti-PAF activity. ${ }^{15}$

Results and discussion

Transformation of cyclopropylmethanols to homoallyl halides and halogenocyclobutanes are representative examples. As for gem-dihalogenocyclopropylmethanols, however, little attention has been paid to them except for the Nazarov-type cyclopentannulation, ${ }^{6}$ although gem-dihalogenocyclopropylmethanols are readily available by dihalogenocarbene addition to allyl alcohols and related compounds. Taking this information into account, we started to investigate the new reaction of ADCMs 1 and 3. First, we found that the reaction of ADCM 1a $\left(\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{Y}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}\right)$ with 1.0 equiv. of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ at room temperature gave 1-chloro-3-methylnaphthalene $2 \mathrm{a}(62 \%)$ as the main product. Lewis acids such as SnCl_{4} and TiCl_{4} were also applicable, although the yields were somewhat poorer. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ used as a solvent gave a better yield. Encouraged by these results, we next tried the reaction with other ADCMs $\mathbf{1 b}-\mathbf{j}$. Table 1 lists these results.

acid

acid

4

Entry	ADCM	X	R^{1}	R^{2}	R^{3}	Y	Acid	1- and 2-Halogenonaphthalene			
								2	(\%)	4	(\%)
1	1a	Cl	H	Me	H	H	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	2a	62		0
2	1a	Cl	H	Me	H	H	SnCl_{4}	2a	55		0
3	1a	Cl	H	Me	H	H	TiCl_{4}	2a	35		0
4	1a	Cl	H	Me	H	H	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}^{\text {b }}$	2a	77		0
5	1b	Cl	H	Me	Ph	H	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	2b	100		0
6	1c	Cl	H	H	Ph	H	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}^{\text {b }}$	2c	40		0
7	1d	Cl	Et	Me	Ph	H	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	2 d	86		0
8	1d	Cl	Et	Me	Ph	H	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}^{\text {b }}$	2d	58		0
$9{ }^{\text {c }}$	1e	Cl	H	Me	Ph	p - MeO	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	2e	$43^{\text {d }}$		0
10^{c}	1e	Cl	H	Me	Ph	$p-\mathrm{MeO}$	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}^{\text {b }}$	2 e	$28{ }^{\text {d }}$		0
$11^{\text {c }}$	1e	Cl	H	Me	Ph	$p-\mathrm{MeO}$	SnCl_{4}	2 e	$62^{\text {d }}$		0
$12^{\text {c }}$	1 f	Cl	H	Me	Ph	$o-\mathrm{MeO}$	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	2 f	$66^{\text {e }}$		0
13^{c}	1g	Cl	H	Me	Ph	p-Me	SnCl_{4}	2g	65°		0
$14^{\text {c }}$	1h	Cl	H	Me	Ph	$p-\mathrm{Cl}$	SnCl_{4}	2h	$27^{\text {d }}$		0
15^{c}	1i	Cl	H	Me	Ph	p-NHAc	SnCl_{4}	2 i	$39^{\text {d }}$		0
16^{c}	1j	Br	H	Me	H	$p-\mathrm{Me}$	SnCl_{4}	2j	$62^{\text {d }}$		0
17	3a	Cl	Ph	Me	H	H	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}^{\text {b }}$		0	4a	78
18	3b	Br	Ph	Me	H	H	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}^{\text {b }}$		0	4b	64

${ }^{a}$ These reactions were carried out using equimolar amounts of Lewis acids in 1,2-dichloroethane at room temp. for 1-24 h unless noted otherwise.
${ }^{b}$ Used as solvent. ${ }^{c}$ Dilute conditions (about $1 \times 10^{-2} \mathrm{~m}$) in the presence of molecular sieves $4 \AA .{ }^{d} 1$-Halogeno-3-methyl-7-substituted (Y) naphthalenes were obtained as the sole regioisomer. ${ }^{e} 1$-Chloro-3-methyl-5-methoxynaphthalene was obtained as the sole regioisomer.

Scheme 1

A plausible reaction pathway for the present benzannulation is illustrated in Scheme 1. The initially formed benzyl cation 5 rearranges into the homoallyl cation 6 through regioselective bond a cleavage in accord with the reported study on the regioselectivity of gem-dichlorocyclopropylmethanols. ${ }^{16}$ The Z-form of the cation of 6 undergoes an intramolecular FriedelCrafts reaction with the aryl group and subsequent elimination of HX to afford the corresponding 1-halogenonaphthalenes 2. Although the E-form of $\mathbf{6}$ may be predominantly formed for steric reasons, it is postulated to isomerize rapidly into the Z-form via the benzyl cation 5 by equilibrium.
In the case of the $\operatorname{ADCM} 1 \mathrm{~b}\left(\mathrm{R}^{1}=\mathrm{Y}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\right.$ Ph), the annulation spontaneously took place (reaction time within 5 min) to give quantitatively 4-chloro-2-methyl-1phenylnaphthalene $\mathbf{2 b}$, since this homoallyl cation intermediate 6 should orientate itself toward the phenyl group (Table 1, entry 5). X-Ray crystallographic analysis of $\mathbf{2 b}$ confirmed the unambiguous structure and conformation of the compound (Fig. 1). However, the reaction of ADCM 1c ($\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Y}=$ $\mathrm{H}, \mathrm{R}^{3}=\mathrm{Ph}$) was a little sluggish so that the desired 1 -chloro-4phenylnaphthalene 2c (40%) was accompanied by $1,1,1$ -trichloro-4,4-diphenylbut-3-ene (20%) (entry 6). We presently think the reason for this different result between ADCMs 1b and $\mathbf{1 c}$ is as follows. \ddagger The benzyl cation 5 derived from ADCM 1b would be more reactive than that derived from ADCM 1c,
and, therefore, the desired benzannulation proceeds more rapidly in the case of $\mathbf{1 b}$. On the other hand, Cl^{-}produced during the benzannulation attacks the $\mathrm{C}-2$ position on the less reactive intermediate 5 derived from 1c to give, partially, 1,1,1-trichloro-4,4-diphenylbut-3-ene as a by-product.
SnCl_{4} and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ worked as effective catalysts for ADCMs 1e-j bearing substituents on the benzene ring (Table 1 , entries 9-16). These reactions needed to be carried out in dilute solution (ca. $1 \times 10^{2} \mathrm{~m}$) with the addition of molecular sieves $4 \AA$, a technique which would circumvent the undesirable intermolecular oligomerization of cationic intermediates and the formation of (E)-4-aryl-1,1,1-trichlorobut-3-enes.
In clear contrast, the reaction of ($1 R^{*}, 3 S^{*}$)-2,2-dihalogeno-1-methyl-3-phenylcyclopropyl(phenyl)methanols 3a $(\mathrm{X}=\mathrm{Cl})$ and 3b ($\mathrm{X}=\mathrm{Br}$) in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as solvent gave the corresponding 2 -halogeno-3-methyl-1-phenylnaphthalenes 4 by regioselective cleavage of bond b (Scheme 1). Obviously, the benzyl cation intermediate 8 rather than 6 was predominantly formed due to the higher stability of the benzyl cation compared with the dihalogenomethylinium cation (Table 1, entries 17 and 18).
\ddagger Recently, we found a similar phenomenon in the related benzannulation of 2-chlorocyclopropyl(diaryl)methanols. These results will be reported in the future.

Fig. 1 X-Ray structure of $\mathbf{2 b}$. There are two crystallographically independent molecules (A or B). An ORTEP drawing of molecule A is shown. All atoms are represented by 50% thermal ellipsoids.

Table 2 Preparation of aryl(gem-dihalogenocyclopropyl)methanols (ADCMs) 1 and 3

Entry	Method a	ADCM	Yield (\%)
1	A	1a	65^{b}
2	B	$\mathbf{1 a}$	41^{c}
3	B	$\mathbf{1 b}$	71
4	B	$\mathbf{1 c}$	56
5	A	$\mathbf{1 d}$	65^{c}
6	A	$\mathbf{1 e}$	73^{c}
7	A	$\mathbf{1 f}$	55^{c}
8	A	$\mathbf{1 g}$	52^{c}
9	A	$\mathbf{1 h}$	66^{c}
10	C	$\mathbf{1 i}$	65^{c}
11	D	$\mathbf{1 j}$	65^{c}
12	D	3a	94^{d}
13		3b	34^{e}

${ }^{a}$ Described in the text. ${ }^{b}$ erythro and threo (7:1) mixtures. ${ }^{c}$ erythro ($>98 \%$) isomers after purification. ${ }^{d}$ Based on the corresponding ketone. ${ }^{e}$ Based on the corresponding acyl chloride.

ADCMs 1 were prepared in three ways as shown in Scheme 2 (Table 2). Method A: Grignard reaction of ArMgBr with 2,2-dichloro-1-methylcyclopropanecarbaldehydes 9 with moderate stereoselectivity (for example: $\mathrm{Ar}=\mathrm{Ph} ; \mathbf{1 a}$, erythro: threo $=$ $7: 1$). Method B: Addition of 2 equiv. of ArMgBr or ArLi to methyl 2,2-dichlorocyclopropanecarboxylates 10. Method C: Highly stereoselective NaBH_{4} reduction (for example: $\mathrm{Ar}=$ $\mathrm{Ph} ; \mathbf{1 a}$, erythro: threo $=98: 2)$ of ketones $\mathbf{1 2 a}(\mathrm{X}=\mathrm{Cl})$ and 12b ($\mathrm{X}=\mathrm{Br}$), which were produced by Friedel-Crafts acylation of 11a with ArH or by the controlled Grignard reaction of ArMgBr with cyclopropanecarbonyl chlorides 11 b , respectively. It should be noted that the 2,2-dibromo analogue $\mathbf{1 j}$ was prepared by a Grignard coupling reaction with the acyl chloride 11b, because the related esters and even aldehydes were of such low reactivity as to cause significant undesirable reductive removal of the bromine atom.

The proposed mechanism which takes the bisected conformational intermediates ${ }^{1 a}$ into account explains the stereochemical course of these reactions. ArMgBr attacks the less hindered face of the s-trans conformer of aldehyde 9 to form preferentially the diastereoisomers $1 \mathbf{1 a}$ and $\mathbf{1 e}-\mathbf{h}$. Similarly, the hydride of NaBH_{4} adds to the less hindered face of the s-cis conformer of $\mathbf{1 2}$ to form the diastereoisomer 1 i or $1 \mathbf{j}$ with high selectivity. This explanation is supported by Shuto's study on the reaction of substituted cyclopropyl ketones and by the

Method A

Method C

$\mathbf{1 i}, \mathbf{j}$
erythro
Scheme 2 Reagents: i, 2 PhMgBr ; ii, $\mathrm{ArH}, \mathrm{AlCl}_{3}$ or ArMgBr
so-called Cieplak theory. ${ }^{17}$ The configuration of the erythro diastereoisomer of 1 was unambiguously determined by X-ray crystallography of $\mathbf{1 g}$ (Fig. 2).

ADCMs 3 were prepared as follows. Method D: Grignard coupling of PhMgBr with the known ($1 R^{*}, 3 S^{*}$)-2,2-dihalogeno-1-methyl-3-phenylcyclopropanecarbonyl chlorides giving the corresponding ketones, ${ }^{10 c}$ followed by NaBH_{4} reduction.

The present benzannulation using both erythro and threo diastereoisomers of 1 a proceeded in almost the same yields, 62% and 60%, respectively. This result indicates that the same cationic intermediate 5 is equally formed from both these diastereoisomers.

Following the demonstration of the utility of this new

Fig. 2 X -Ray structure of erythro-1g. There are two crystallographically independent molecules (A or B). An ORTEP drawing of molecule A is shown. All atoms are represented by 30% thermal ellipsoids.
method, we described a total synthesis of the two lignan lactones, justicidin E 17^{11} and taiwanin C 18, ${ }^{12}$ wherein the construction of the 4 -aryl-1-chloro-2,3-dimethylnaphthalene skeleton is involved as the key step (Scheme 3). Dichlorocarbene addition of the starting methyl angelate [methyl (Z)-2-methylbut-2-enoate] gave the gem-dichlorocyclopropyl ester 13, which was converted into ADCM 14 by the treatment with 2 molar equiv. of 3,4-methylenedioxyphenyllithium, in 68\% overall yield. Treatment of ADCM 14 with SnCl_{4} (0.1 equiv.) and molecular sieves $4 \AA$ in 1,2 -dichloroethane at room temperature for 30 min successfully afforded the desired 1 -chloro-2,3-dimethyl-4-(3,4-methylenedioxyphenyl)-6,7-methylenedioxynaphthelene 15 in 83% yield; a 0.1 molar catalytic amount of SnCl_{4} was sufficient to complete the reaction in this case. $\mathrm{LiAlH}_{4}-\mathrm{TiCl}_{4}$ removal ${ }^{18}$ of the chlorine atom in 1 -chloronaphthalene 15 gave the naphthalene 16, whose vicinal methyl groups were brominated by N -bromosuccinimide to give the dibromide 17. The dibromide 17 was converted into the diol 18 upon treatment with AgNO_{3} in 10% aqueous NaOH , in 32% overall yield from 15. Finally, the reported oxidation of 18 by AgCO_{3}-Celite (Fetizon's reagent) ${ }^{19}$ followed by separation gave justicidin E 19 and taiwanin C 20 $(17 / 18=5: 1)$, respectively, in 17% overall yield from methyl angelate.

Finally, we tested the anti-platelet activating factor (antiPAF) activity of justicidin E, since these kinds of lignan-type compounds are expected to show anti-PAF activity as already mentioned. ${ }^{15}$ As a result, a significant, but relatively weak activity $\left(\mathrm{IC}_{50}\right.$ value $\left.=100-150 \mu \mathrm{M}\right)$ was observed for justicidin E.§

In conclusion, a novel benzannulation of aryl(gem-dihalogenocyclopropyl)methanols to give 1- and 2-halogenonaphthalenes has been developed, the use of which has been demonstrated by application to the total synthesis of the lignan lactones, justicidin E and taiwanin C. Further extension of this benzannulation is now in progress.

Experimental

Melting points were determined on a hot-stage microscope apparatus (Yanagimoto) and are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL EX-90 (90 MHz) and/or JEOL $\propto(400 \mathrm{MHz})$ spectrometer in CDCl_{3} using a TMS internal standard; J values given in Hz. IR spectra were recorded on a Hitachi 270-30 spectrophotometer. Mass spectra were obtained with a Hitachi GC/MS M-80 instrument (70 eV). All of the reagents and solvents were purified prior to use. Silica gel column chromatography was performed on a Merck Art. 7734 and 9385. 2,2-Dichloro-1-methylcyclopropanecarboxylic acid and methyl 2,2-dichloro-1-methylcyclopropane-
§ Other biological activity for this type of lignan lactone has been described; for example, in S. Yamamura, J. Synth. Org. Chem. Jpn., 1985, 43, 583.

13
ii

15

16 ($\mathrm{Y}=\mathrm{H}$)
7 ($\mathrm{Y}=\mathrm{Br}$)
vii

Justicidin E 19
Taiwanin C 20
Scheme 3 Reagents: i, $\mathrm{CHCl}_{3}, 50 \%$ aq. NaOH , cat. $\mathrm{PhCH}_{2} \mathrm{~N}^{+}-$ $\mathrm{Et}_{3} \mathrm{Cl}^{-}$; ii, $3,4-\left(-\mathrm{OCH}_{2} \mathrm{O}-\right) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Li}$; iii, $\mathrm{SnCl}_{4}(0.1$ equiv.), MS $4 \dot{\AA}$; iv, $\mathrm{LiAlH}_{4}-\mathrm{TiCl}_{4} ;$ v, 2 NBS ; vi, AgNO_{3}, aq. NaOH ; vii, Fetizon's reagent
carboxylate were commercially available. Ether refers to diethyl ether.

2,2-Dichloro-1-methylcyclopropanecarbaldehyde 9

Methyl 2,2-dichloro-1-methylcyclopropanecarboxylate (9.25 g , 50.5 mmol) in THF ($50 \mathrm{~cm}^{3}$) was added to a stirred suspension of $\mathrm{LiAlH}_{4}(1.13 \mathrm{~g}, 28.3 \mathrm{mmol})$ in THF $\left(15 \mathrm{~cm}^{3}\right)$ at $0-5^{\circ} \mathrm{C}$. The mixture was stirred at room temp. for 5 h after which it was treated with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, with cooling, and then diluted with ether and filtered through Celite using ether. Concentration of the mixture and distillation of the crude oil gave 2,2-dichloro-1-methylcyclopropylmethanol ${ }^{20}$ (7.12 g , 91%) as a colourless liquid, bp $83-86^{\circ} \mathrm{C} / 17 \mathrm{mmHg}$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3356$ and $2968 ; \delta(90 \mathrm{MHz}) 1.25\left(1 \mathrm{H}, \mathrm{d}, J_{\text {gem }}\right.$ $7.1), 1.42\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 7.1\right), 1.45(3 \mathrm{H}, \mathrm{s}), 2.10(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.62$
($1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 12.2$) and $3.84\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 12.2\right)$. Pyridinium chlorochromate (PCC reagent) ($17.9 \mathrm{~g}, 83.3 \mathrm{mmol}$) was added portionwise during 1 h to a stirred solution of 2,2-dichloro-1methylcyclopropylmethanol ($8.61 \mathrm{~g}, 55.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50$ cm^{3}) at room temp. under a N_{2} atmosphere. The mixture was stirred at room temp. for 20 h after which it was diluted with ether, filtered through Celite using ether and concentrated. The crude oil was subjected to flash column chromatography on Florisil using $\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{AcOEt}$ ($8: 1$) as eluent, followed by distillation to give the product $9(7.56 \mathrm{~g}, 89 \%)$ as a colourless liquid; bp $80-82^{\circ} \mathrm{C} / 60 \mathrm{mmHg}$ (Found: C, 38.91 ; H, 3.77. $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}$ requires $\mathrm{C}, 39.25 ; \mathrm{H}, 3.95 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1722$, 1452 and $1053 ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.51(3 \mathrm{H}, \mathrm{s}), 1.68\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 7.6\right)$, $2.26\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 7.6\right)$ and $9.30(1 \mathrm{H}, \mathrm{s})$. Compared with PCC reagent, the use of pyridinium dichromate (PDC) gave significantly slower conversion of 2,2 -dichloro-1-methylcyclopropylmethanol.

2,2-Dichloro-1-methylcyclopropanecarbonyl chloride 11a

Thionyl chloride ($6.55 \mathrm{~g}, 0.055 \mathrm{~mol}$) was added to a stirred solution of 2,2-dichloro-1-methylcyclopropanecarboxylic acid $(8.45 \mathrm{~g}, 50.0 \mathrm{mmol})$ and a small amount of DMF ($c a .20 \mathrm{mg}$) in toluene ($50 \mathrm{~cm}^{3}$) at room temp. The mixture was refluxed for 2 h and then, after being cooled to room temp., was evaporated and distilled to give the product $11 \mathrm{a}(8.53 \mathrm{~g}, 91 \%$) as a pale yellow liquid; bp $68-70^{\circ} \mathrm{C} / 18 \mathrm{mmHg}$ (Found: $\mathrm{C}, 31.83 ; \mathrm{H}, 2.47$. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}$ requires C, $32.04 ; \mathrm{H}, 2.69 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2942$, 1784 and $1454 ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.65\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 7.0\right), 1.75(3 \mathrm{H}, \mathrm{s})$ and $2.40\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 7.0\right)$.

2,2-Dibromo-1-methylcyclopropanecarbonyl chloride 11b ${ }^{20 a}$

Jones oxidation of 2,2-dibromo-1-methylcyclopropylmethanol^{21} in a similar manner to that described earlier ${ }^{10 \mathrm{c}}$ gave 2,2-dibromo-1-methylcyclopropanecarboxylic acid ${ }^{20}(82 \%)$ as a light brown liquid. In a manner similar to that described for the preparation of the acid chloride 11a, the reaction of 2,2-dibromo-1-methylcyclopropanecarboxylic acid gave the product 11b (83%) as a light brown liquid; bp $88-90^{\circ} \mathrm{C} / 4 \mathrm{mmHg}$ (lit., ${ }^{20 a} 82-84^{\circ} \mathrm{C} / 2 \mathrm{mmHg}$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2942,1780$ and $1452 ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.60\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 8.1\right), 1.76(3 \mathrm{H}, \mathrm{s})$ and 1.78 ($1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 7.0$).

Methyl ($1 R^{*}, 3 R^{*}$)-2,2-dichloro-1,3-dimethylcyclopropanecarboxylate 13

50% aqueous $\mathrm{NaOH}(70.0 \mathrm{~g})$ was added to a vigorously stirred mixture of methyl angelate [methyl (Z)-2-methylbut-2-enoate; $10.0 \mathrm{~g}, 88 \mathrm{mmol}]$, benzyl(triethyl)ammonium chloride $(1.00 \mathrm{~g}$, 4.4 mmol) and $\mathrm{CHCl}_{3}(47.8 \mathrm{~g})$ at $35-40^{\circ} \mathrm{C}$. The mixture was then stirred for 16 h at the same temperature after which it was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3} \times 2\right)$. The combined extracts were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and distilled to give the product $13(14.0 \mathrm{~g}, 81 \%)$ as a pale yellow liquid; bp $90-93^{\circ} \mathrm{C} / 18 \mathrm{mmHg}$ (Found: $\mathrm{C}, 42.44$; $\mathrm{H}, 9.96 . \mathrm{C}_{7} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 42.67 ; \mathrm{H}, 5.11 \%$); $v_{\text {max }}($ neat $)$ / $\mathrm{cm}^{-1} 2938,1742$ and $1155 ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.33-1.66(1 \mathrm{H}, \mathrm{m})$, $1.41(3 \mathrm{H}, \mathrm{d}, J 9.5), 1.59(3 \mathrm{H}, \mathrm{s})$ and $3.72(3 \mathrm{H}, \mathrm{s})$.

2,2-Dichloro-1-methylcyclopropyl(phenyl)methanol 1a

Method A. 2,2-Dichloro-1-methylcyclopropanecarbaldehyde $9(1.53 \mathrm{~g}, 10 \mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ was added to a stirred solution of $\mathrm{PhMgBr}\left(1 \mathrm{~m} \mathrm{THF} \mathrm{solution;} 12 \mathrm{~cm}^{3}, 12 \mathrm{mmol}\right.$) at $0-$ $5^{\circ} \mathrm{C}$ under a N_{2} atmosphere. The mixture was stirred at room temp. for 5 h after which it was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ether. The extract was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to leave a crude oil. This was subjected to flash column chromatography on SiO_{2} using $\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{AcOEt}(10: 1)$ as eluent to give the product 1a ($1.50 \mathrm{~g}, 65 \%$; a mixture of diastereoisomers; erythro/threo $=7: 1$); erythro isomer: colourless liquid (Found: $\mathrm{C}, 57.23 ; \mathrm{H}, 5.43 . \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}$ requires $\mathrm{C}, 57.17 ; \mathrm{H}, 5.23 \%$);
$v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3449,3032,2939$ and $1037 ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.20(3$ $\mathrm{H}, \mathrm{s}), 1.35\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 7.6\right), 1.75\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 7.6\right), 2.35(1 \mathrm{H}, \mathrm{d}$, $J 5.0, \mathrm{OH}), 4.75(1 \mathrm{H}, \mathrm{d}, J 5.0)$ and $7.30-7.45(5 \mathrm{H}, \mathrm{m})$; threo isomer: colourless liquid; $\delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.16(3 \mathrm{H}, \mathrm{s}), 1.42(1 \mathrm{H}, \mathrm{d}$, $\left.J_{\text {gem }} 7.6\right), 1.71\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 7.6\right), 2.15(1 \mathrm{H}, \mathrm{d}, J 4.1, \mathrm{OH}), 4.81(1$ $\mathrm{H}, \mathrm{d}, J 4.1)$ and $7.05-7.69(5 \mathrm{H}, \mathrm{m})$.

Method C. PhMgBr (1 m THF solution; $7.2 \mathrm{~cm}^{3}, 7.2 \mathrm{mmol}$) was added to a stirred solution of 2,2-dichloro-1-methylcyclopropanecarbonyl chloride $11 \mathrm{a}(2.69 \mathrm{~g}, 14.4 \mathrm{mmol}$) in THF (15 cm^{3}) at $0-5^{\circ} \mathrm{C}$. The mixture was stirred at room temp. for 10 h after which a similar work-up to that described for method A gave 2,2-dichloro-1-methylcyclopropyl(phenyl)methanone 12a ($1.48 \mathrm{~g}, 45 \%$ based on 11a; 90% based on PhMgBr) as a colourless liquid (Found: C, 57.43; H, 4.17. $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}$ requires $\mathrm{C}, 57.67 ; \mathrm{H}, 4.40 \%) ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.45\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 7.0\right)$, $1.65(3 \mathrm{H}, \mathrm{s}), 2.35\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 7.0\right)$, $7.40-8.10(5 \mathrm{H}, \mathrm{m}) . \mathrm{NaBH}_{4}$ $(0.15 \mathrm{~g}, 3.97 \mathrm{mmol})$ was added to the ketone $12 \mathrm{a}(1.83 \mathrm{~g}, 8.03$ mmol) in MeOH ($7.0 \mathrm{~cm}^{3}$) at room temp. and the mixture was stirred at room temp. for 5 h . Aqueous 1 m HCl was added to the mixture, which was then extracted with ether. The organic phase was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a crude oil. This was subjected to flash column chromatography on SiO_{2} using $\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{AcOEt}(10: 1)$ as eluent to give the diastereoisomer product $1 \mathrm{a}(1.67 \mathrm{~g}, 90 \%$; erythro/threo $=98: 2$ determined by $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR measurement).

2,2-Dichloro-1-methylcyclopropyl(diphenyl)methanol 1b

Method B. Methyl 2,2-dichloro-1-methylcyclopropanecarboxylate ($3.66 \mathrm{~g}, 20 \mathrm{mmol}$) in THF ($20 \mathrm{~cm}^{3}$) was added to a stirred solution of PhMgBr (1 m THF solution; $50 \mathrm{~cm}^{3}$, 50 mmol) at $0-5^{\circ} \mathrm{C}$ after which the mixture was stirred at $40-$ $45{ }^{\circ} \mathrm{C}$ for 24 h . Sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(100 \mathrm{~cm}^{3}\right)$ was added to the mixture, which was then extracted with ether. The extract was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude crystals were washed with hexane ($20 \mathrm{~cm}^{3}$) and dried to give the desired product $1 \mathrm{~b}(4.36 \mathrm{~g}, 71 \%)$ as colourless crystals; mp $87.0-88.5^{\circ} \mathrm{C}$ (Found: C, 66.16; H, 5.26. $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}$ requires C, $66.46 ; \mathrm{H}, 5.25 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $3569,3059,1491$ and $1445 ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.20(3 \mathrm{H}, \mathrm{s}), 1.30(1 \mathrm{H}$, $\left.\mathrm{d}, J_{\mathrm{gem}} 7.0\right), 2.55\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 7.0\right), 2.80(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $7.10-$ $7.60(10 \mathrm{H}, \mathrm{m})$.

2,2-Dichlorocyclopropyl(diphenyl)methanol 1c

Method B. In a manner similar to that described for the preparation of the alcohol $\mathbf{1 b}$, the reaction of methyl 2,2 dichlorocyclopropanecarboxylate ${ }^{22}$ gave the product $1 \mathbf{c}(56 \%)$ as colourless crystals; $\mathrm{mp} 62-65^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 65.85 ; \mathrm{H}, 4.97$. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}$ requires $\mathrm{C}, 65.55 ; \mathrm{H}, 4.81 \%$); $v_{\text {max }}(\mathrm{KBr}$ disk $) / \mathrm{cm}^{-1}$ 3571,1493 and $1449 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.69(1 \mathrm{H}, \mathrm{dd}, J 11.0, J 7.1)$, 2.08 ($1 \mathrm{H}, \mathrm{dd}, J 8.5, J 7.1$), 2.45 ($1 \mathrm{H}, \mathrm{dd}, J 11.0, J 8.5$), $2.54(1 \mathrm{H}$, $\mathrm{br} \mathrm{s}, \mathrm{OH}), 7.20-7.50(8 \mathrm{H}, \mathrm{m})$ and $7.60-7.65(2 \mathrm{H}, \mathrm{m})$.

($1 R^{*}, 3 S^{*}$)-3-Ethyl-2,2-dichloro-1-methylcyclopropyl(diphenyl)methanol 1d
 Method B. Methyl ($1 R^{*}, 3 S^{*}$)-2,2-dichloro-3-ethyl-1-methyl-

 cyclopropanecarboxylate was prepared in a procedure similar to that described for the preparation of $13(72 \%)$ as a pale yellow liquid; bp $97-99^{\circ} \mathrm{C} / 17 \mathrm{mmHg}$ (Found: C, $45.12 ; \mathrm{H}, 5.58$. $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}$ requires C, $45.52 ; \mathrm{H}, 5.73 \%$; ; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 2943, 1742 and $1147 ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 0.99-1.70(5 \mathrm{H}, \mathrm{m}), 1.60(3 \mathrm{H}$, s) $2.25(1 \mathrm{H}, \mathrm{dd}, J 11.0, J 9.0)$ and $3.70(3 \mathrm{H}, \mathrm{s})$. In a manner similar to that described for the preparation of the alcohol $1 \mathbf{b}$, the reaction of methyl ($1 R^{*}, 3 S^{*}$)-2,2-dichloro-3-ethyl-1-methylcyclopropanecarboxylate gave the product 1d (65\%) as colourless crystals; $\mathrm{mp} 109-11{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 67.80 ; \mathrm{H}, 6.05$. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}$ requires C, $\left.68.07 ; \mathrm{H}, 6.01 \%\right)$; $v_{\text {max }}\left(\mathrm{KBr}\right.$ disk) $/ \mathrm{cm}^{-1}$ 3561,2965 and 1447; $\delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.00(3 \mathrm{H}, \mathrm{s}), 1.05(3 \mathrm{H}, \mathrm{t}, J$ $7.0), 1.20-1.80(2 \mathrm{H}, \mathrm{m}), 2.65(1 \mathrm{H}, \mathrm{dd}, J 9.0, J 7.0), 2.80(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH})$ and $7.10-7.60(10 \mathrm{H}, \mathrm{m})$.
2,2-Dichloro-1-methylcyclopropyl(4-methoxyphenyl)methanol 1 e

Method A. In a manner similar to that described for the preparation of the alcohol 1a, the reaction of 4-methoxyphenylmagnesium bromide with the aldehyde 9 gave the erythroproduct 1e (73%) as colourless crystals; mp $49.0-50.0^{\circ} \mathrm{C}$ (Found: C, $54.82 ; \mathrm{H}, 5.55 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 55.19 ; \mathrm{H}$, $5.40 \%) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3570,2937,2837$ and $1032 ; \delta_{\mathrm{H}}(90 \mathrm{MHz})$ $1.23(3 \mathrm{H}, \mathrm{s}), 1.32\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 7.1\right), 1.72\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 7.1\right), 1.89-$ $2.42(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.81(3 \mathrm{H}, \mathrm{s}), 4.72(1 \mathrm{H}, \mathrm{s}), 6.89(2 \mathrm{H}, \mathrm{d}, J 9.7)$ and $7.32(2 \mathrm{H}, \mathrm{d}, J 9.7)$.

2,2-Dichloro-1-methylcyclopropyl(2-methoxyphenyl)methanol 1f

Method A. In a manner similar to that described for the preparation of the alcohol 1a, the reaction of 2-methoxyphenylmagnesium bromide with the aldehyde 9 gave erythro-product If (55%) as colourless crystals; mp $50.5-51.5^{\circ} \mathrm{C}$ (Found: C, $54.92 ; \mathrm{H}, 5.57 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2}$ requires C, $55.19 ; \mathrm{H}, 5.40 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3460,2939,2837$ and 1032; $\delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.21$ (1 $\left.\mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 7.1\right), 1.26(3 \mathrm{H}, \mathrm{s}), 1.94\left(1 \mathrm{H}, \mathrm{d}, J_{\text {gem }} 7.1\right), 2.07-2.63(1$ $\mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.81(3 \mathrm{H}, \mathrm{s}), 5.12(1 \mathrm{H}, \mathrm{s}), 6.79-7.41(3 \mathrm{H}, \mathrm{m})$ and 7.50-7.68 ($1 \mathrm{H}, \mathrm{m}$).

2,2-Dichloro-1-methylcyclopropyl(p-tolyl)methanol 1g

Method A. In a manner similar to that described for the preparation of the alcohol 1a, the reaction of p-tolylmagnesium bromide with the aldehyde 9 gave the erythro-product (52%) as colourless crystals; mp $53.5-54.5^{\circ} \mathrm{C}$ (Found: C, 58.63 ; H, 5.90 . $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}$ requires C, $58.79 ; \mathrm{H}, 5.76 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 3423, 2922, 2854 and $1041 ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.22(3 \mathrm{H}, \mathrm{s}), 1.32(1 \mathrm{H}$, d, $\left.J_{\mathrm{gem}} 6.1\right), 1.73\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 6.1\right), 2.15-2.42(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 2.38$ $(3 \mathrm{H}, \mathrm{s}), 4.68-4.82(1 \mathrm{H}, \mathrm{br})$ and $7.08-7.44(4 \mathrm{H}, \mathrm{m})$.

X-Ray analysis of 1 g

Intensity data were collected on a Rigaku AFC7R diffractometer using graphite-monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=$ $1.54178 \AA$). Crystal data are as follows: $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{OCl}_{2}, M 245.15$, triclinic, space group ($P \overline{1} 2$), $a=11.012(3), b=11.956(2), c=$ 10.538(2) $\AA, \alpha=95.32(2)^{\circ}, \beta=104.14(2)^{\circ}, \gamma=65.44(1)^{\circ}, V=$ 1223.4(4) $\AA^{3}, Z=4, F(000)=512.00, D_{\mathrm{x}}=1.331 \mathrm{~g} \mathrm{~cm}^{-3}$, $\mu(\mathrm{Cu}-\mathrm{K} \alpha)=45.36 \mathrm{~cm}^{-1}$. A total of 4388 reflections with $\theta<65^{\circ}$ were collected by the $\omega-2 \theta$ scan technique. The structure was solved by direct methods and refined by fullmatrix least-squares. Non-hydrogen atoms were refined with anisotropic thermal parameters. The final R and R_{w} factors were 0.056 and 0.077 , respectively, for 2768 observed reflections [$I>3 \sigma(I)]$. There are two crystallographically independent molecules in the asymmetric unit. The conformations of the two molecules are almost identical except for those torsion angles corresponding to $\mathrm{C}(5), \mathrm{C}(4), \mathrm{C}(8), \mathrm{C}(9)$ (molecule $\mathrm{A},-86.7^{\circ}$; molecule B -105.5°). All calculations were carried out on a micro VAX II using SDP package. All the structural parameters for this determination (coordinates, bond lengths and bond angles, thermal parameters) and that described later for compound 2b have been deposited with the Cambridge Crystallographic Data Centre (see Instructions for Authors, J. Chem. Soc., Perkin Trans. 1, 1996, Issue 1). Any request to the CCDC for this information should include the full bibliographic citation together with the reference no. 207/33.

2,2-Dichloro-1-methylcyclopropyl(4-chlorophenyl)methanol 1h

Method A. In a manner similar to that described for the preparation of the alcohol 1a, the reaction of 4-chlorophenylmagnesium bromide with the aldehyde 9 gave the erythroproduct $1 \mathrm{~h}(66 \%)$ as colourless crystals; mp $72-72.5^{\circ} \mathrm{C}$ (Found: C, 49.48; H, 4.37. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{O}$ requires $\mathrm{C}, 49.75 ; \mathrm{H}$, $4.17 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3387,2928,2854$ and $1041 ; \delta_{\mathrm{H}}(90$ $\mathrm{MHz}) 1.18(3 \mathrm{H}, \mathrm{s}), 1.34\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 6.5\right), 1.73\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}}\right.$
$6.5), 2.38(1 \mathrm{H}, \mathrm{d}, J 3.3, \mathrm{OH}), 4.75(1 \mathrm{H}, \mathrm{d}, J 3.3)$ and $7.33(4$ H, br s).

2,2-Dichloro-1-methylcyclopropyl(4-acetamidophenyl)methanol $1 i$

Method C. Phenylacetamide ($1.35 \mathrm{~g}, 10.0 \mathrm{mmol}$) was added to a stirred suspension of 2,2-dichloro-1-methylcyclopropanecarbonyl chloride ($1.88 \mathrm{~g}, 10.0 \mathrm{mmol}$) and $\mathrm{AlCl}_{3}(1.46 \mathrm{~g}, 10.0$ $\mathrm{mmol})$ in $\mathrm{CS}_{2}\left(20 \mathrm{~cm}^{3}\right)$ at room temp. The mixture was stirred at room temp. for 10 h and then quenched with 1 m aqueous HCl . The mixture was extracted with ether and the extract washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The resulting crude oil was subjected to flash column chromatography on SiO_{2} using $\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{AcOEt}(50: 1)$ as eluent to give the desired intermediary ketone ($0.33 \mathrm{~g}, 18 \%$) as a colourless liquid. $\mathrm{NaBH}_{4}(77 \mathrm{mg}, 2.03 \mathrm{mmol})$ was added to a stirred solution of the ketone ($291 \mathrm{mg}, 1.02 \mathrm{mmol}$) in $\mathrm{MeOH}\left(2 \mathrm{~cm}^{3}\right)$ at room temp. after which the mixture was stirred at room temp. for 10 h . It was then diluted with water and extracted with ethyl acetate. The extract was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The resulting crude oil was subjected to flash column chromatography on SiO_{2} using $\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{AcOEt}$ ($5: 1$) as eluent to give the product (192 mg , 65%) as colourless crystals; $\mathrm{mp} 50.5-51.5^{\circ} \mathrm{C}$ (Found: C, 53.85 ; H, 5.01 ; N, 4.66. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NO}_{2}$ requires C, 54.18 ; H , $5.25 ; \mathrm{N}, 4.86 \%)$; $v_{\max }(\mathrm{KBr}$ disk $) / \mathrm{cm}^{-1} 3424,2363,1512$ and 1042; $\delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.15(3 \mathrm{H}, \mathrm{s}), 1.33\left(1 \mathrm{H}, \mathrm{d}, J_{\text {gem }} 6.0\right)$, 1.78 (1 $\left.\mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 6.0\right), 2.15(3 \mathrm{H}, \mathrm{s}), 4.70(1 \mathrm{H}, \mathrm{s})$ and $7.10-7.35(4 \mathrm{H}, \mathrm{m})$.

2,2-Dibromo-1-methylcyclopropyl(p-tolyl)methanol 1j

Method C. $\mathrm{AlCl}_{3}(1.34 \mathrm{~g}, 10.0 \mathrm{mmol})$ was added to a stirred solution of 2,2 -dibromo-1-methylcyclopropanecarbonyl chloride $11 \mathrm{~b}(2.77 \mathrm{~g}, 10.0 \mathrm{mmol})$ in toluene $\left(30 \mathrm{~cm}^{3}\right)$ at $0-5^{\circ} \mathrm{C}$ after which the mixture was stirred at $0-5^{\circ} \mathrm{C}$ for 1 h . The mixture was then diluted with water and extracted with ether. The organic phase was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The resulting crude oil was subjected to flash column chromatography on SiO_{2} using $\mathrm{C}_{6} \mathrm{H}_{14}$-AcOEt (20:1) as eluent to give the desired intermediary ketone ($2.15 \mathrm{~g}, 65 \%$) as a colourless liquid (Found: C, 43.21; H, 3.49. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}$ requires C, $43.41 ; \mathrm{H}, 3.64 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2930,1684,1607$ and $1316 ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.65\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 7.0\right), 1.67(3 \mathrm{H}, \mathrm{s}), 2.45$ $\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 7.0\right)$ and $7.36(2 \mathrm{H}, \mathrm{d}, J 10.0)$ and $7.90(2 \mathrm{H}, \mathrm{d}, J$ 10.0). In a manner similar to that described for the reduction of method C , the reaction using the ketone gave the product $1 \mathrm{j}(81 \%)$ as colourless crystals; $\mathrm{mp} 56.5-60.0^{\circ} \mathrm{C}$ (Found: C, 43.26; $\mathrm{H}, 4.39 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}$ requires $\mathrm{C}, 43.51 ; \mathrm{H}, 4.22 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3387,2920,1514$ and $1047 ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.35$ (3 $\mathrm{H}, \mathrm{s}), 1.50\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 7.0\right), 1.95\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 7.0\right), 2.35(3 \mathrm{H}, \mathrm{s})$, $2.40(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 2.0, \mathrm{OH}), 4.75(1 \mathrm{H}, \mathrm{d}, J 2.0)$ and $7.05-7.40(4$ H, m).

($1 R^{*}, 3 S^{*}$)-2,2-Dichloro-1-methyl-3-phenylcyclopropyl(phenyl)methanol 3a

Method D. $\mathrm{NaBH}_{4}(32.5 \mathrm{mg}, 0.85 \mathrm{mmol})$ was added to a stirred solution of ($1 R^{*}, 3 S^{*}$)-2,2-dichloro-1-methyl-3-phenylcyclopropyl(phenyl)methanone ${ }^{10 c}$ ($255 \mathrm{mg}, 0.85 \mathrm{mmol}$) in $\mathrm{MeOH}\left(2.0 \mathrm{~cm}^{3}\right)$ at room temp. and the mixture was stirred at room temp. for 5 h . After this, the mixture was treated with 1 m aqueous HCl and extracted with ether. The extract was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The resulting crude oil was subjected to flash column chromatography on SiO_{2} using $\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{AcOEt}$ ($10: 1$) as eluent to give the product 3 a ($245 \mathrm{mg}, 94 \%$) as colourless crystals; $\mathrm{mp} 129-131^{\circ} \mathrm{C}$ (Found: C, 66.17; H, 5.01. $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}$ requires $\mathrm{C}, 66.46 ; \mathrm{H}$, $5.25 \%) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3588,2926,1449$ and $1040 ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz}) 0.91(3 \mathrm{H} \times 2 / 100, \mathrm{~s}), 1.01(3 \mathrm{H} \times 98 / 100, \mathrm{~s}), 2.98$ (1 $\mathrm{H} \times 2 / 100, \mathrm{~s}), 3.03(1 \mathrm{H} \times 98 / 100, \mathrm{~s}), 4.97(1 \mathrm{H} \times 2 / 100, \mathrm{~s})$, $5.01(1 \mathrm{H} \times 98 / 100, \mathrm{~s}), 6.95-7.05(2 \mathrm{H}, \mathrm{m}), 7.20-7.34(3 \mathrm{H}, \mathrm{m})$, 7.34-7.45 ($3 \mathrm{H}, \mathrm{m}$) and 7.45-7.54 ($2 \mathrm{H}, \mathrm{m}$).

2,2-Dibromo-1-methyl-3-phenylcyclopropyl(phenyl)methanol 3b

Method D. In a manner similar to that described for the preparation of the alcohol 3a, a reaction using ($1 R^{*}, 3 S^{*}$)-2,2-dibromo-1-methyl-3-phenylcyclopropanecarbonyl chloride ${ }^{10} \mathrm{C}$ gave the product 3b (34%) as brown crystals; $\mathrm{mp} 95-98^{\circ} \mathrm{C}$ (Found: C, $51.38 ; \mathrm{H}, 3.87 . \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}$ requires $\mathrm{C}, 51.55 ; \mathrm{H}$, $4.07 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3575,2918$ and $1453 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.94$ $(3 \mathrm{H} \times 2 / 100, \mathrm{~s}), 0.99(3 \mathrm{H} \times 98 / 100, \mathrm{~s}), 2.77(1 \mathrm{H} \times 2 / 100$, s), $3.01(1 \mathrm{H} \times 98 / 100, \mathrm{~s}), 4.95(1 \mathrm{H} \times 2 / 100, \mathrm{~s}), 4.98(1$ $\mathrm{H} \times 98 / 100, \mathrm{~s})$ and $6.95-7.54(10 \mathrm{H}, \mathrm{m})$.

4-Chloro-2-methyl-1-phenylnaphthalene 2b

$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(142 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added to a stirred solution of 2,2-dichloro-1-methylcyclopropyl(diphenyl)methanol (ADCM) 1b ($307 \mathrm{mg}, 1.0 \mathrm{mmol}$) in 1,2-dichloromethane (2.0 cm^{3}) at room temp. after which the mixture was stored at room temp. for 1 h . It was then diluted with water and extracted with ether. The organic phase was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The resulting crude oil was subjected to flash column chromatography on SiO_{2} using $\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{AcOEt}$ ($50: 1$) as eluent to give the product $\mathbf{2 a}$ (252 mg , 100%) as colourless crystals; mp $87-87.5^{\circ} \mathrm{C}$ (Found: C, 80.64; $\mathrm{H}, 4.92 . \mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}$ requires $\mathrm{C}, 80.79 ; \mathrm{H}, 5.18 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1}$ 2919,1579 and $1375 ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 2.20(3 \mathrm{H}, \mathrm{s}), 7.00-7.60(9 \mathrm{H}$, $\mathrm{m})$ and 8.15-8.35 ($1 \mathrm{H}, \mathrm{m}$); m/z $252\left(\mathrm{M}^{+}, 100 \%\right)$.

X-Ray analysis of $\mathbf{2 b}$

Intensity data were collected on an Enraf-Nonius CAD4 diffractometer using graphite-monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.5418 \AA$). Crystal data are as follows: $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}, M 252.74$, monoclinic, space group $P 2_{1}, a=11.798(1), b=12.269(1), c=$ $8.903(1) \AA, \beta=99.47(1)^{\circ}, V=1271.2 \AA^{3}, Z=4, F(000)=528$, $D_{\mathrm{x}}=1.321 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=24.76 \mathrm{~cm}^{-1}$. A total of 2543 reflections with $\theta<70^{\circ}$ were collected by $\omega-2 \theta$ scan technique. The structure was solved by direct methods using MULTAN and refined by full-matrix least-squares. Non-hydrogen atoms were refined with anisotropic thermal parameters. The final R and R_{w} factors were 0.040 and 0.058 , respectively, for 1686 observed reflections $[I>3 \sigma(I)]$. There are two crystallographically independent molecules in the asymmetric unit. The conformations of the two molecules are almost identical. All calculations were carried out on a micro VAX II using SDP package.

1-Chloro-3-methylnaphthalene 2a

In a manner similar to that described for the preparation of the naphthalene 2b, the reaction of ADCM 1 a with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ gave the product $\mathbf{2 b}(62 \%)$ as a colourless liquid (Found: C, $74.95 ; \mathbf{H}$, 4.87. $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{Cl}$ requires $\mathrm{C}, 74.79 ; \mathrm{H}, 5.14 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 3053, 2920, 1599 and $1500 ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 2.49(3 \mathrm{H}, \mathrm{s}), 7.31-7.77$ ($5 \mathrm{H}, \mathrm{m}$) and 8.08-8.34 ($1 \mathrm{H}, \mathrm{m}$); m/z $176\left(\mathrm{M}^{+}, 100 \%\right)$.

1-Chloro-4-phenylnaphthalene 2c

In a manner similar to that described for the preparation of the naphthalene $\mathbf{2 b}$, the reaction of $\mathrm{ADCM} \mathbf{1 c}$ with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ gave the product $\left(40 \%\right.$) as colourless crystals; $\mathrm{mp} 63-65{ }^{\circ} \mathrm{C}$ (lit., ${ }^{23} 66-$ $68^{\circ} \mathrm{C}$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3055,1491,1444$ and $1381 ; \delta_{\mathrm{H}}(90 \mathrm{MHz})$ $7.14-7.74(9 \mathrm{H}, \mathrm{m}), 7.92(1 \mathrm{H}, \mathrm{d}, J 9.0)$ and $8.38(1 \mathrm{H}, \mathrm{d}, J 9.0)$; $m / z 252\left(\mathrm{M}^{+}, 100\right)$. 1,1,1-Trichloro-4,4-diphenylbut-3-ene was obtained as a by-product (20%); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3052,1488$ and 1357; $\delta_{\mathrm{H}}(90 \mathrm{MHz}) 3.32$ ($1 \mathrm{H}, \mathrm{dd}, J 9.0, J 9.0$), $3.50(1 \mathrm{H}, \mathrm{dd}, J$ 12.0, J9.0), 6.15-6.45 ($1 \mathrm{H}, \mathrm{m}$) and 7.18-7.7 $(10 \mathrm{H}, \mathrm{m}) ; ~ m / z(20$ eV) $310\left(\mathrm{M}^{+}, 45\right)$ and $193\left(\mathrm{M}^{+}-\mathrm{CCl}_{3}, 100\right) ; m / z 193\left(\mathrm{M}^{+}-\right.$ $\mathrm{CCl}_{3}, 100$).

1-Chloro-2-ethyl-3-methyl-4-phenylnaphthalene 2d

In a manner similar to that described for the preparation of the naphthalene 2b, the reaction of ADCM 1d with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ or with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ gave the product $2 \mathrm{~d}(86 \%$ or 58%) as a colourless liquid (Found: $\mathrm{C}, 81.01 ; \mathrm{H}, 5.88 . \mathrm{C}_{19} \mathrm{H}_{17} \mathrm{Cl}$ requires $\mathrm{C}, 81.27 ; \mathrm{H}, 6.10 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3043,1485$ and $1391 ; \delta_{\mathrm{H}}(90$

MHz) 1.30 ($3 \mathrm{H}, \mathrm{t}, J 7.0$), $2.20(3 \mathrm{H}, \mathrm{s}), 3.10(2 \mathrm{H}, \mathrm{q}, J 7.0), 7.10-$ $7.70(8 \mathrm{H}, \mathrm{m})$ and $8.25-8.40(1 \mathrm{H}, \mathrm{m}) ; m / z 280\left(\mathrm{M}^{+}, 100 \%\right)$.

1,7-Dichloro-3-methyInaphthalene 2 h

$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(152 \mathrm{mg}, 1.07 \mathrm{mmol})$ was added to a stirred solution of ADCM $1 \mathrm{~h}(246 \mathrm{mg}, 1.07 \mathrm{mmol})$ and molecular sieves $4 \AA(1.0 \mathrm{~g})$ in 1,2-dichloromethane ($110 \mathrm{~cm}^{3}$) at room temp. after which the mixture was stirred at room temp. for 1 h . The mixture was then diluted with water and extracted with ether. The extract was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The resulting crude oil was subjected to flash column chromatography on SiO_{2} using $\mathrm{C}_{6} \mathrm{H}_{14}-\operatorname{AcOEt}(50: 1)$ as eluent to give the product $2 \mathrm{~h}(27 \%)$ as colourless crystals; $\mathrm{mp} 30.0-$ $31.0^{\circ} \mathrm{C}$ (Found: C, 62.21 ; $\mathrm{H}, 3.97 . \mathrm{C}_{11} \mathrm{H}_{8} \mathrm{Cl}_{2}$ requires C, 62.59 ; $\mathrm{H}, 3.82 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 2953,2854,1593$ and $1489 ; \delta_{\mathrm{H}}(90$ $\mathrm{MHz}) 2.44(3 \mathrm{H}, \mathrm{s}), 7.17-7.81(4 \mathrm{H}, \mathrm{m})$ and $7.92-8.24(1 \mathrm{H}, \mathrm{m})$.

1-Chloro-7-methoxy-3-methylnaphthalene 2 e

In a manner similar to that described for the preparation of the naphthalene 2h, the reaction of ADCM 1e with SnCl_{4} gave the product $\mathbf{2 f}(62 \%)$ as a colourless oil (Found: C, 69.44; H, 5.08. $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClO}$ requires $\mathrm{C}, 69.74 ; \mathrm{H}, 5.36 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2957$, 2837, 1630 and $1506 ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 2.43(3 \mathrm{H}, \mathrm{s}), 2.90(3 \mathrm{H}, \mathrm{s})$, 6.90-7.46 ($4 \mathrm{H}, \mathrm{m}$) and $8.06(1 \mathrm{H}, \mathrm{d}, J 7.0) ; m / z 206\left(\mathrm{M}^{+}, 100 \%\right)$.

1-Chloro-5-methoxy-3-methylnaphthalene $\mathbf{2 f}$

In a manner similar to that described for the preparation of the naphthalene $\mathbf{2 h}$, the reaction of ADCM $1 f$ with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ gave the product $2 \mathrm{~g}(66 \%)$ as colourless crystals; $\mathrm{mp} 60-61^{\circ} \mathrm{C}$ (Found: C, 69.40; H, 5.43. $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClO}$ requires $\mathrm{C}, 69.74 ; \mathrm{H}$, $5.36 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 2957,2934,2837,1630$ and $1506 ; \delta_{\mathrm{H}}(90$ $\mathrm{MHz}) 2.43(3 \mathrm{H}, \mathrm{s}), 2.90(3 \mathrm{H}, \mathrm{s}), 6.90-7.46(4 \mathrm{H}, \mathrm{m})$ and $8.06(1$ $\mathrm{H}, \mathrm{d}, J 7.0) ; m / z 206\left(\mathrm{M}^{+}, 100 \%\right)$.

1-Chloro-3,7-dimethyInaphthalene $\mathbf{2 g}$

In a manner similar to that described for the preparation of the naphthalene 2 h , the reaction of ADCM 1 g with SnCl_{4} gave the product $\mathbf{2 h}(65 \%)$ as a colourless oil (Found: C, 75.87 ; H, 6.05. $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Cl}$ requires C, $75.59 ; \mathrm{H}, 5.81 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2924$, 2854,1599 and $1498 ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 2.46(3 \mathrm{H}, \mathrm{s}), 2.51(3 \mathrm{H}, \mathrm{s})$, 7.16-7.86 ($4 \mathrm{H}, \mathrm{m}$) and 7.92-8.21 $(1 \mathrm{H}, \mathrm{m})$.

1-Bromo-3,7-dimethylnaphthalene $\mathbf{2 j}$

In a manner similar to that described for the preparation of the naphthalene 2 h , the reaction of ADCM 1 j with SnCl_{4} gave the product $\mathbf{2 j}(62 \%$) as a colourless oil (Found: C, 61.07 ; H, 4.55 . $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{Br}$ requires C, $61.30 ; \mathrm{H}, 4.72 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2919$, 2361 and $1610 ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 2.46(3 \mathrm{H}, \mathrm{s}), 2.51(3 \mathrm{H}, \mathrm{s}), 7.20-7.85$ $(4 \mathrm{H}, \mathrm{m})$ and $8.05(1 \mathrm{H}, \mathrm{d}, J 10)$.

1-Phenyl-2-chloro-3-methyInaphthalene 4a

A solution of ($1 R^{*}, 3 S^{*}$)-2,2-dichloro-1-methyl-3-phenylcyclopropyl(phenyl)methanol $3 \mathrm{a}(100 \mathrm{mg}, 0.33 \mathrm{mmol}$) in trifluoroacetic acid $\left(1 \mathrm{~cm}^{3}\right)$ was stirred at room temp. for 1 h after which the mixture was evaporated to give a crude oil. This was subjected to flash column chromatography on SiO_{2} using $\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{AcOEt}$ ($50: 1$) as eluent to give the product 4 ($65 \mathrm{mg}, 78 \%$) as colourless crystals; mp $112-115^{\circ} \mathrm{C}$ (Found: C, 80.66; H, 5.09 . $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Cl}$ requires C, $80.79 ; \mathrm{H}, 5.18 \%$); $v_{\text {max }}(\mathrm{KBr}$ disk $) / \mathrm{cm}^{-1}$ 2954, 1475 and 1378; $\delta_{\mathrm{H}}(90 \mathrm{MHz}) 2.25(3 \mathrm{H}, \mathrm{s}), 7.00-7.80(9 \mathrm{H}$, $\mathrm{m})$ and $7.90(1 \mathrm{H}, \mathrm{brs}) ; m / z 252\left(\mathrm{M}^{+}, 100 \%\right)$.

2-Bromo-3-methyl-1-phenyInaphthalene 4b

In a manner similar to that described for the preparation of the naphthalene $\mathbf{4 a}$, the reaction of ADCM 3b gave the product $\mathbf{4 b}$ (64%) as colourless crystals; mp $66-67^{\circ} \mathrm{C}$ (Found: C, 68.45 ; H, 4.19. $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Br}$ requires $\left.\mathrm{C}, 68.70 ; \mathrm{H}, 4.41 \%\right) ; v_{\text {max }}(\mathrm{KBr}$ disk) $/ \mathrm{cm}^{-1} 3054,2363,1487$ and $747 ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 2.35(3 \mathrm{H}, \mathrm{s})$, $7.00-7.85(9 \mathrm{H}, \mathrm{m})$ and $8.05(1 \mathrm{H}, \mathrm{br}$ s).
($1 R^{*}, 3 R^{*}$)-2,2-Dichloro-1,3-dimethylcyclopropylbis(3,4methylenedioxyphenyl)methanol 14
BuLi (1.6 m THF solution; $34 \mathrm{~cm}^{3}, 55 \mathrm{mmol}$) was added to a stirred solution of 1-bromo-3,4-methylenedioxybenzene (10.1 $\mathrm{g}, 50 \mathrm{mmol})$ in THF $\left(50 \mathrm{~cm}^{3}\right)$ at $-60^{\circ} \mathrm{C}$, and the mixture was stirred at $-60^{\circ} \mathrm{C}$ for 30 min . Then, methyl $\left(1 R^{*}, 3 R^{*}\right)$-2,2-dichloro-1,3-dimethyl-2,2-dichlorocyclopropanecarboxylate $13(0.99 \mathrm{~g}, 25 \mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ was added to the mixture over 10 min , after which the latter was stirred for 1 h . After this it was poured into ice-water and extracted with ether. The extract was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a crude oil. This was subjected to flash column chromatography on SiO_{2} using $\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{AcOEt}$ (5:1) as eluent to give the product $14(7.26 \mathrm{~g}, 71 \%)$ as a colourless amorphous solid (Found: C, 58.43; $\mathrm{H}, 4.21 . \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{5}$ requires $\mathrm{C}, 58.70 ; \mathrm{H}, 4.43 \%$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3451,2924,1487$ and $1237 ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.20(3 \mathrm{H}, \mathrm{s}), 1.20-1.80(4 \mathrm{H}, \mathrm{m}), 2.70(1$ $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 6.00(2 \mathrm{H}, \mathrm{s}), 6.05(2 \mathrm{H}, \mathrm{s})$ and $6.60-7.30(6 \mathrm{H}, \mathrm{m})$.

1-Chloro-2,3-dimethyl-4-(3,4-methylenedioxyphenyl)-6,7(methylenedioxy)naphthalene 15

$\mathrm{SnCl}_{4}(0.56 \mathrm{~g}, 2.15 \mathrm{mmol})$ was added to a stirred suspension of 2,2-dichloro-1,3-dimethylcyclopropylbis(3,4-methylenedioxyphenyl) methanol $14(8.70 \mathrm{~g}, 21.3 \mathrm{mmol})$ and molecular sieves $4 \AA$ $(5.0 \mathrm{~g})$ in 1,2 -dichloroethane $\left(10^{3} \mathrm{~cm}^{3}\right)$ at room temp. Work-up similar to that described for the preparation of 2 e gave the product $15(6.27 \mathrm{~g}, 83 \%)$ as colourless crystals; mp $185-186.5^{\circ} \mathrm{C}$ (Found: C, $67.51 ; \mathrm{H}, 4.38 . \mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClO}_{4}$ requires $\mathrm{C}, 67.71 ; \mathrm{H}$, $4.26 \%) ; v_{\text {max }}(\mathrm{KBr} \mathrm{disk}) / \mathrm{cm}^{-1} 2913,2884,1483,1460$ and 945 ; $\delta_{\mathrm{H}}(90 \mathrm{MHz}) 2.09(3 \mathrm{H}, \mathrm{s}), 2.41(3 \mathrm{H}, \mathrm{s}), 5.92(2 \mathrm{H}, \mathrm{s}), 6.03(2 \mathrm{H}, \mathrm{s})$ and 6.50-7.60 ($5 \mathrm{H}, \mathrm{m}$); $m / z 354\left(\mathrm{M}^{+}, 100 \%\right)$.

2,3-Dimethyl-1-(3,4-methylenedioxyphenyl)-(6,7-methylenedioxy)naphthalene 16

$\mathrm{TiCl}_{4}(9.64 \mathrm{~g}, 51 \mathrm{mmol})$ was added to THF $\left(250 \mathrm{~cm}^{3}\right)$ at room temp. with stirring. To the stirred suspension were successively added LiAlH_{4} (1 m THF solution; $102 \mathrm{~cm}^{3}, 0.102 \mathrm{~mol}$) and the chloronaphthalene $15(6.00 \mathrm{~g}, 16.9 \mathrm{mmol})$ in THF $\left(50 \mathrm{~cm}^{3}\right)$, at room temp. The reaction mixture was refluxed for 4 h , cooled to room temp., and carefully poured into ice-water. The mixture was filtered through Celite using ether and the residue was extracted with ether. The organic phase was washed with water and brine, dried $\left(\mathrm{Mg}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The resulting crude residue was subjected to flash column chromatography on SiO_{2} using $\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{AcOEt}(10: 1)$ as eluent to give the product $16(4.72 \mathrm{~g}, 87 \%)$ as colourless crystals; mp $150-152^{\circ} \mathrm{C}$ (Found: C, $74.15 ; \mathrm{H}, 5.09 . \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{4}$ requires $\mathrm{C}, 74.99 ; \mathrm{H}$, 5.03%); $v_{\text {max }}(\mathrm{KBr}$ disk $) / \mathrm{cm}^{-1} 2905,1460,1238,1042$ and 947 ; $\delta_{\mathrm{H}}(90 \mathrm{MHz}) 2.09(3 \mathrm{H}, \mathrm{s}), 2.41(3 \mathrm{H}, \mathrm{s}), 5.92(2 \mathrm{H}, \mathrm{s}), 6.03(2 \mathrm{H}, \mathrm{s})$ and 6.50-7.60 ($6 \mathrm{H}, \mathrm{m}$); m/z $320\left(\mathrm{M}^{+}, 100 \%\right)$.

2,3-Bis(bromomethyl)-1-(3,4-methylenedioxyphenyl)-(6,7methylenedioxy)naphthalene 17

A mixture of 2,3-dimethylnaphthalene $16(2.67 \mathrm{~g}, 8.34 \mathrm{mmol})$, N-bromosuccinimide ($3.13 \mathrm{~g}, 17.6 \mathrm{mmol}$), and dibenzoyl peroxide ($121 \mathrm{mg}, 0.5 \mathrm{mmol}$) in $\mathrm{CCl}_{4}\left(30 \mathrm{~cm}^{3}\right.$) was refluxed for 5.5 h . After cooling to room temp., the mixture was concentrated. The crude residue was subjected to flash column chromatography on SiO_{2} using $\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{AcOEt}(10: 1)$ as eluent to give the product $17(2.31 \mathrm{~g}, 58 \%)$ as colourless crystals; mp $162-164^{\circ} \mathrm{C}$ (Found: C, $50.48 ; \mathrm{H}, 3.25 . \mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{4}$ requires C, $50.24 ; \mathrm{H}, 2.95 \%$); $v_{\text {max }}(\mathrm{KBr}$ disk $) / \mathrm{cm}^{-1} 2895,1460,1244,1205$ and $937 ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 4.64(2 \mathrm{H}, \mathrm{s}), 4.88(2 \mathrm{H}, \mathrm{s}), 5.98(2 \mathrm{H}, \mathrm{s})$, $6.06(2 \mathrm{H}, \mathrm{s})$ and $6.67-7.80(6 \mathrm{H}, \mathrm{m}) ; m / z 476\left(\mathrm{M}^{+}, 100 \%\right)$.

1-(3,4-Methylenedioxyphenyl)-(6,7-methylenedioxy)-naphthalene-2,3-diyldimethanol 18

A mixture of 2,3-bis(bromomethyl)naphthalene $17(635 \mathrm{mg}$, 1.33 mmol) and $\mathrm{AgNO}_{3}(1.36 \mathrm{~g}, 8.00 \mathrm{mmol})$ in acetone $-\mathrm{H}_{2} \mathrm{O}$ (v/v $1: 1 ; 60 \mathrm{~cm}^{3}$) was stirred at room temp. for 2 h . The mixture
was filtered through Celite using ether and the residue was extracted with ether. The organic phase was dried $\left(\mathrm{Mg}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a crude residue which was subjected to flash column chromatography on SiO_{2} using $\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{AcOEt}$ ($10: 1$) as eluent. This afforded the product 18 ($294 \mathrm{mg}, 63 \%$) as colourless crystals; mp $194-195{ }^{\circ} \mathrm{C}$ (lit., ${ }^{13 b}$ 199-201 ${ }^{\circ} \mathrm{C}$) (Found: C, 67.84, H, 4.68. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{6}$ requires $\mathrm{C}, 68.18 ; \mathrm{H}$, $4.58 \%) ; v_{\max }\left(\mathrm{KBr}\right.$ disk) $/ \mathrm{cm}^{-1} 3358,2901,1460,1238$ and 1040 ; $\delta_{\mathrm{H}}(90 \mathrm{MHz}) 2.60-3.32(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.60(2 \mathrm{H}, \mathrm{s}), 4.85(2 \mathrm{H}, \mathrm{s}), 6.00$ $(2 \mathrm{H}, \mathrm{s}), 6.04(2 \mathrm{H}, \mathrm{s})$ and $6.60-7.80(6 \mathrm{H}, \mathrm{m})$.

Justicidin E 19 and taiwanin C 20

According to a reported procedure, ${ }^{13 b}$ a stirred suspension of the diol 18 ($290 \mathrm{mg}, 0.82 \mathrm{mmol}$) and Fetizon's reagent $(7.25 \mathrm{~g})$ in benzene ($160 \mathrm{~cm}^{3}$) were refluxed for 1.5 h with azeotropic removal of water using a Dean-Stark apparatus. After cooling, the mixture was concentrated. The residue was filtered off and washed with hot benzene to give a $5: 1$ mixture of justicidin E 19 and Taiwanin C 20 ($270 \mathrm{mg}, 94 \%$). Recrystallization of this twice from CHCl_{3} gave $19(120 \mathrm{mg})$ as colourless crystals; mp $265-267^{\circ} \mathrm{C}$ (lit., ${ }^{13 b} 271-272^{\circ} \mathrm{C}$); $\nu_{\max }\left(\mathrm{KBr}\right.$ disk) $/ \mathrm{cm}^{-1} 3350$, 1761 and $1230 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 5.18\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{gem}} 15.0\right), 5.23(1 \mathrm{H}$, d, $\left.J_{\text {gem }} 15.0\right), 6.03-6.10(4 \mathrm{H}, \mathrm{m}), 6.80(1 \mathrm{H}, \mathrm{d}, J 8.0), 6.82(1 \mathrm{H}$, s), $6.98(1 \mathrm{H}, \mathrm{d}, J 8.0), 7.10(1 \mathrm{H}, \mathrm{s}), 7.31(1 \mathrm{H}, \mathrm{s})$ and $8.28(1 \mathrm{H}$, s). The mother liquor was concentrated to provide a crude residue which was subjected to flash column chromatography on SiO_{2} using $\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{AcOEt}(1: 1)$ as eluent to give $20(40 \mathrm{mg})$ as colourless crystals; mp $264-267^{\circ} \mathrm{C}$ (lit., ${ }^{136} 272-276.5^{\circ} \mathrm{C}$); $v_{\text {max }}(\mathrm{KBr} \mathrm{disk}) / \mathrm{cm}^{-1} 3355,1765$ and $1230 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 5.38$ (2 $\mathrm{H}, \mathrm{s}), 6.09(4 \mathrm{H}, \mathrm{s}), 6.80(1 \mathrm{H}, \mathrm{d}, J 8.0), 6.82(1 \mathrm{H}, \mathrm{s}), 6.96(1 \mathrm{H}, \mathrm{d}$, $J 8.0), 7.12(1 \mathrm{H}, \mathrm{s}), 7.20(1 \mathrm{H}, \mathrm{s})$ and $7.69(1 \mathrm{H}, \mathrm{s})$. These spectral data 19 and 20 are identical with reported values.

Assay of anti-PAF activity of justicidin E

A ${ }^{1} \mathrm{H}-\mathrm{C} 16-\mathrm{PAF}$ binding assay was carried out according to the reported procedure. ${ }^{14 a}$ The IC_{50} value of justicidin E was $100-$ $150 \mu \mathrm{M}$ (activity: $28 \% / 30 \mu \mathrm{~m}, 45 \% / 100 \mu \mathrm{~m}$), when thiazolidin-4one type anti-PAF SM-10661 ${ }^{14 a}\left(\mathrm{IC}_{50}=c a .3 .2 \mu \mathrm{~m}\right)$ was selected as a reference drug.

Acknowledgements

We thank Dr Tadatoshi Aratani for helpful discussions, and Dr Kazunori Yanagi and Dr Hitoshi Miura for the X-ray crystallographic measurements. We also thank the Sumitomo Pharmaceutical Co., Ltd., for measurement of the anti-PAF activity of justicidin E. This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture (Japan).

References

1 Part of this work appeared in a preliminary communication: S. Seko, Y. Tanabe and G. Suzukamo, Tetrahedron Lett., 1990, 31, 6883.

2 (a) H. N. C. Wong, M.-Y. Hon, C.-Y. Tse, Y.-C. Yip, J. Tanko and T. Hudlicky, Chem. Rev., 1989, 89, 165; (b) U.-H. Reißig, Top. Curr. Chem., 1988, 144, 73.
3 (a) D. Cartwrite, P. Langcake, R. J. Pryce, D. P. Leworthy and J. P. Ride, Nature, 1977, 267, 511; (b) G. Holan, D. F. O'Keefe, C. Vergona and R. Walser, Nature, 1978, 272, 734; (c) Y. Kurahashi, S. Kagabu, N. Matsumoto, T. Yamada, K. Wada and T. Kondo, Jap P 54 349/1988 (Chem. Abstr., 1988, 109, 190038h).
4 (a) W. E. Paham and E. E. Schweizer, Organic Reactions, Wiley, New York, 1963, vol. 13, p. 55; (b) C. M. Starks and C. Liotta, Phase Transfer Catalysis, Academic Press, New York, 1978, p. 224.
5 (a) D. Seyferth, H. Yamazaki and D. L. Alleston, J. Org. Chem., 1963, 28, 703; (b) T. Ando, H. Yamanaka, F. Namigata and W. Funasaka, J. Am. Chem. Soc., 1967, 89, 5719; (c) R. M. Blankenship, K. A. Burdett and J. S. Swenton, J. Am. Chem. Soc., 1974, 39, 2300; (d) L. K. Sydnes and L. Skattebøl, Tetrahedron Lett., 1974, 3703; (e) T. Hirao, T. Masunaga, Y. Ohshiro and T. Agawa, J. Org. Chem., 1981, 46, 3745; (f) A. Osuka, K. Takeuchi and
H. Suzuki, Bull. Chem. Soc. Jpn., 1984, 57, 303; (g) K. Miura, Y. Ichinose, K. Fugami, K. Oshima and K. Utimoto, Bull. Chem. Soc. Jpn., 1989, 62, 143; (h) T. Hirao, K. Hirano, T. Hasegawa, Y. Ohshiro and I. Ikeda, J. Org. Chem., 1993, 58, 6529; (i) Y. Apeloig and M. Nakash, J. Am. Chem. Soc., 1994, 116, 10084.
6 T. Hiyama, M. Tsukanaka and H. Nozaki, J. Am. Chem. Soc., 1974, 96, 3713. For recent study of transformation of gem-dihalogenocyclopropane: (a) M. Mitani, Y. Kobayashi and K. Koyama, J. Chem. Soc., Perkin Trans. 1, 1995, 653; (b) S. Kagabu, C. Ando and J. Ando, J. Chem. Soc., Perkin Trans. I, 1996, 739; (c) M. Mitani, Y. Kobayashi and K. Koyama, J. Chem. Soc., Perkin Trans. I, 1995, 653; (d) J. R. A. Dulayymi and M. S. Baird, Tetrahedron Lett., 1995, 36, 3393; (e) A. R. A. Dulayymi, J. R. A. Dulayymi, M. S. Baird and L. Rajaram, Tetrahedron, 1995, 8371.

7 (a) K. H. Holm and L. Skattebøl, Tetrahedron Lett., 1977, 2347; (b) K. H. Holm and L. Skattebøl, J. Am. Chem. Soc., 1977, 99, 5480; (c) K. H. Holm, E. A. Mohamed and L. Skattebøl, Acta Chem. Scand., 1993, 47, 500.
8 (a) K. Kitatani, T. Hiyama and H. Nozaki, Bull. Chem. Soc. Jpn., 1977, 50, 1600; (b) T. Harada, T. Katsuhira, K. Hattori and A. Oku, J. Org. Chem., 1993, 58, 2958; (c) T. Harada, T. Katsuhira, K. Hattori and A. Oku, Tetrahedron, 1994, 50, 7987.

9 (a) Y. Tanabe, Y. Nishii and K. Wakimura, Chem. Lett., 1994, 1757; (b) Y. Tanabe, K. Wakimura and Y. Nishii, Tetrahedron Lett., 1996, 37, 1837.
10 (a) Y. Nishii and Y. Tanabe, Tetrahedron Lett., 1995, 36, 8803; (b) Y. Nishii, H. Matsumura, Y. Muroya, T. Tsuchiya and Y. Tanabe, Biosci. Biotech. Biochem., 1995, 59, 1355; (c) Y. Tanabe, K. Wakimura, Y. Nishii and Y. Muroya, Synthesis, 1996, 388; (d) Y. Nishii, K. Wakimura, T. Tsuchiya, S. Nakamura and Y. Tanabe, J. Chem. Soc., Perkin Trans. 1, 1996, 1243.

11 K. Wada and K. Munakata, Tetrahedron Lett., 1970, 2017.
12 Y.-T. Lin, T.-B. Lo, K. T. Wang and B. Weinstein, Tetrahedron Lett., 1967, 849.
13 Previous syntheses: (a) T. L. Holmes and R. Stevenson, J. Chem. Soc. C, 1971, 2091; (b) T. L. Holmes and R. Stevenson, J. Org. Chem., 1971, 36, 3450; (c) E. Block and R. Stevenson, J. Org. Chem., 1971, 36, 3450; (d) B. J. Arnold, S. M. Mellows and P. G. Sammes, J. Chem. Soc., Perkin Trans. 1, 1973, 1266; (e) Z. Horii, M. Tujiuchi, K. Kanai and T. Momose, Chem. Pharm. Bull., 25, 1977, 1803. For recent syntheses: (f) T. Hattori, H. Tanaka, Y. Okaishi and S. Miyano, J. Chem. Soc., Perkin Trans. 1, 1995, 235; (g) J. E. Cochran and A. Padwa, J. Org. Chem., 1995, 60, 3938; (h) T. Ogiku, S.

Yoshida, H. Ohmizu and T. Iwasaki, J. Org. Chem., 1995, 60, 4585;
(i) K. Kobayashi, J. Tokimatsu, K. Maeda, O. Morikawa and H. Konishi, J. Chem. Soc., Perkin Trans. I, 1995, 3013.

14 (a) Y. Tanabe, G. Suzukamo, Y. Komuro, N. Imanishi, S. Morooka, M. Enomoto, A. Kojima, Y. Sanemitsu and M. Mizutani, Tetrahedron Lett., 1991, 32, 379; (b) Y. Tanabe, Y. Kubota, Y. Sanemitsu, N. Itaya and G. Suzukamo, Tetrahedron Lett., 1991, 32, 383; (c) Y. Tanabe, H. Yamamoto, M. Murakami, K. Yanagi, Y. Kubota, H. Okumura, Y. Sanemitsu and G. Suzukamo, J. Chem. Soc., Perkin Trans. I, 1995, 935; (d) Y. Tanabe, H. Okumura, M. Nagaosa and M. Murakami, Bull. Chem. Soc. Jpn., 1995, 68, 1467.
15 (a) D. J. Hanahan, Ann. Rev. Biochem., 1986, 55, 483; (b) M. N. Chang, Drugs of the Future, 1986, 11, 869; (c) M. Shiraiwa, K. Fujita, H. Yoshiwara, S. Kobayashi and M. Ohno, J. Synth. Org. Chem. Jpn., 1987, 45, 369; (d) M. Koltai and P. G. Braquet, Clinical Reviews in Allergy, 1994, 12, 361.
16 (a) F. T. DeWeese, D. E. Minter, J. T. Nosovitch and M. G. Rudel, Tetrahedron, 1986, 42, 4195; (b) C. S-Rouvier, Tetrahedron, 1981, 37, 4195.
17 (a) S. Shuto, S. Ono, Y. Hase, N. Kamiyama, H. Takada, K. Yamashita and A. Matsuda, J. Org. Chem., 1996, 61, 915; (b) A. S. Cieplak, J. Am. Chem. Soc., 1981, 103, 4540; (c) A. S. Cieplak, B. D. Tait and C. R. Johnson, J. Am. Chem. Soc., 1989, 111, 8447.

18 T. Mukaiyama, M. Hayashi and K. Narasaka, Chem. Lett., 1973, 291.

19 M. Fetizon, M. Golfier and J.-M. Louis, J. Chem. Soc., Chem. Commun., 1969, 1102 and 1118.
20 (a) British Drug Houses Ltd., Neth. Appl. 6506881, 1965 (Chem. Abstr., 1966, 64, p. 17445e); (b) I. A. D'yakonov and L. P. Denilkina, Zh. Obshch. Khim., 1964, 34, 38 (Chem. Abstr., 1964, 60, 15745c).
21 K. Kleveland, L. Skattebøl and L. K. Sydnes, Acta Chem. Scand., Ser. B, 1977, 31, 463.
22 D. Seyferth, J. M. Burlitch, R. J. Minasz, J. V.-P. Mui, H. D. Simmons, Jr., A. J. H. Treiber and S. R. Dowd, J. Am. Chem. Soc., 1965, 87, 4259.
23 K. R. Bedford, G. W. Burton, M. Dela, B. D. Peter and H. Suzuki, J. Chem. Soc., Perkin Trans. 2, 1974, 459.

Paper 6/01885H
Received 19th March 1996
Accepted 30th April 1996

[^0]: \dagger The term 'benzannulation' is used, for example, in M. F. Semmelhack, S. Ho, D. Cohen, M. Steigerwald, M. C. Lee, G. Lee, A. M. Gilbert, W. D. Wulff and R. G. Ball, J. Am. Chem. Soc., 1994, 116, 7108.

